Optimal Generalized Petersen Graphs

نویسنده

  • J. H. VAN LINT
چکیده

In this paper we establish a theorem on the maximum number of vertices of a generalized Petersen graph as a function of the diameter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graceful labelings of the generalized Petersen graphs

A graceful labeling of a graph $G=(V,E)$ with $m$ edges is aninjection $f: V(G) rightarrow {0,1,ldots,m}$ such that the resulting edge labelsobtained by $|f(u)-f(v)|$ on every edge $uv$ are pairwise distinct. For natural numbers $n$ and $k$, where $n > 2k$, a generalized Petersengraph $P(n, k)$ is the graph whose vertex set is ${u_1, u_2, cdots, u_n} cup {v_1, v_2, cdots, v_n}$ and its edge set...

متن کامل

The lower bound for the number of 1-factors in generalized Petersen graphs

‎In this paper‎, ‎we investigate the number of 1-factors of a‎ ‎generalized Petersen graph $P(N,k)$ and get a lower bound for the‎ ‎number of 1-factors of $P(N,k)$ as $k$ is odd‎, ‎which shows that the‎ ‎number of 1-factors of $P(N,k)$ is exponential in this case and‎ ‎confirms a conjecture due to Lovász and Plummer (Ann‎. ‎New York Acad‎. ‎Sci‎. ‎576(2006)‎, ‎no‎. ‎1‎, ‎389-398).

متن کامل

Circular wirelength of Generalized Petersen Graphs

In this paper we formulate the Vertex Congestion Lemma leading to a new technique in computing the exact wirelength of an embedding. We compute the circular wirelength of generalized Petersen graphs by partitioning the vertices as well as the edges of cycles. Further we obtain the linear wirelength of circular ladders. Our algorithms produce optimal values in linear time.

متن کامل

Total Domination number of Generalized Petersen Graphs

Generalized Petersen graphs are an important class of commonly used interconnection networks and have been studied . The total domination number of generalized Petersen graphs P(m,2) is obtained in this paper.

متن کامل

The Independence Number for the Generalized Petersen Graphs

Given a graph G, an independent set I(G) is a subset of the vertices of G such that no two vertices in I(G) are adjacent. The independence number α(G) is the order of a largest set of independent vertices. In this paper, we study the independence number for the Generalized Petersen graphs, finding both sharp bounds and exact results for subclasses of the Generalized Petersen graphs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014